Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Am Med Inform Assoc ; 30(5): 923-931, 2023 04 19.
Article in English | MEDLINE | ID: covidwho-2285997

ABSTRACT

OBJECTIVES: Vaccines are crucial components of pandemic responses. Over 12 billion coronavirus disease 2019 (COVID-19) vaccines were administered at the time of writing. However, public perceptions of vaccines have been complex. We integrated social media and surveillance data to unravel the evolving perceptions of COVID-19 vaccines. MATERIALS AND METHODS: Applying human-in-the-loop deep learning models, we analyzed sentiments towards COVID-19 vaccines in 11 211 672 tweets of 2 203 681 users from 2020 to 2022. The diverse sentiment patterns were juxtaposed against user demographics, public health surveillance data of over 180 countries, and worldwide event timelines. A subanalysis was performed targeting the subpopulation of pregnant people. Additional feature analyses based on user-generated content suggested possible sources of vaccine hesitancy. RESULTS: Our trained deep learning model demonstrated performances comparable to educated humans, yielding an accuracy of 0.92 in sentiment analysis against our manually curated dataset. Albeit fluctuations, sentiments were found more positive over time, followed by a subsequence upswing in population-level vaccine uptake. Distinguishable patterns were revealed among subgroups stratified by demographic variables. Encouraging news or events were detected surrounding positive sentiments crests. Sentiments in pregnancy-related tweets demonstrated a lagged pattern compared with the general population, with delayed vaccine uptake trends. Feature analysis detected hesitancies stemmed from clinical trial logics, risks and complications, and urgency of scientific evidence. DISCUSSION: Integrating social media and public health surveillance data, we associated the sentiments at individual level with observed populational-level vaccination patterns. By unraveling the distinctive patterns across subpopulations, the findings provided evidence-based strategies for improving vaccine promotion during pandemics.


Subject(s)
COVID-19 , Social Media , Female , Pregnancy , Humans , COVID-19 Vaccines , Sentiment Analysis , COVID-19/prevention & control , Pandemics , Public Health Surveillance
2.
J Biomed Inform ; 139: 104306, 2023 03.
Article in English | MEDLINE | ID: covidwho-2220929

ABSTRACT

BACKGROUND: In electronic health records, patterns of missing laboratory test results could capture patients' course of disease as well as ​​reflect clinician's concerns or worries for possible conditions. These patterns are often understudied and overlooked. This study aims to identify informative patterns of missingness among laboratory data collected across 15 healthcare system sites in three countries for COVID-19 inpatients. METHODS: We collected and analyzed demographic, diagnosis, and laboratory data for 69,939 patients with positive COVID-19 PCR tests across three countries from 1 January 2020 through 30 September 2021. We analyzed missing laboratory measurements across sites, missingness stratification by demographic variables, temporal trends of missingness, correlations between labs based on missingness indicators over time, and clustering of groups of labs based on their missingness/ordering pattern. RESULTS: With these analyses, we identified mapping issues faced in seven out of 15 sites. We also identified nuances in data collection and variable definition for the various sites. Temporal trend analyses may support the use of laboratory test result missingness patterns in identifying severe COVID-19 patients. Lastly, using missingness patterns, we determined relationships between various labs that reflect clinical behaviors. CONCLUSION: In this work, we use computational approaches to relate missingness patterns to hospital treatment capacity and highlight the heterogeneity of looking at COVID-19 over time and at multiple sites, where there might be different phases, policies, etc. Changes in missingness could suggest a change in a patient's condition, and patterns of missingness among laboratory measurements could potentially identify clinical outcomes. This allows sites to consider missing data as informative to analyses and help researchers identify which sites are better poised to study particular questions.


Subject(s)
COVID-19 , Electronic Health Records , Humans , Data Collection , Records , Cluster Analysis
3.
PLoS One ; 18(1): e0266985, 2023.
Article in English | MEDLINE | ID: covidwho-2196885

ABSTRACT

PURPOSE: In young adults (18 to 49 years old), investigation of the acute respiratory distress syndrome (ARDS) after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been limited. We evaluated the risk factors and outcomes of ARDS following infection with SARS-CoV-2 in a young adult population. METHODS: A retrospective cohort study was conducted between January 1st, 2020 and February 28th, 2021 using patient-level electronic health records (EHR), across 241 United States hospitals and 43 European hospitals participating in the Consortium for Clinical Characterization of COVID-19 by EHR (4CE). To identify the risk factors associated with ARDS, we compared young patients with and without ARDS through a federated analysis. We further compared the outcomes between young and old patients with ARDS. RESULTS: Among the 75,377 hospitalized patients with positive SARS-CoV-2 PCR, 1001 young adults presented with ARDS (7.8% of young hospitalized adults). Their mortality rate at 90 days was 16.2% and they presented with a similar complication rate for infection than older adults with ARDS. Peptic ulcer disease, paralysis, obesity, congestive heart failure, valvular disease, diabetes, chronic pulmonary disease and liver disease were associated with a higher risk of ARDS. We described a high prevalence of obesity (53%), hypertension (38%- although not significantly associated with ARDS), and diabetes (32%). CONCLUSION: Trough an innovative method, a large international cohort study of young adults developing ARDS after SARS-CoV-2 infection has been gather. It demonstrated the poor outcomes of this population and associated risk factor.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Young Adult , Aged , Adolescent , Adult , Middle Aged , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Cohort Studies , Retrospective Studies , Electronic Health Records , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/complications , Obesity/complications
4.
JAMA Netw Open ; 5(12): e2246548, 2022 12 01.
Article in English | MEDLINE | ID: covidwho-2157644

ABSTRACT

Importance: The COVID-19 pandemic has been associated with an increase in mental health diagnoses among adolescents, though the extent of the increase, particularly for severe cases requiring hospitalization, has not been well characterized. Large-scale federated informatics approaches provide the ability to efficiently and securely query health care data sets to assess and monitor hospitalization patterns for mental health conditions among adolescents. Objective: To estimate changes in the proportion of hospitalizations associated with mental health conditions among adolescents following onset of the COVID-19 pandemic. Design, Setting, and Participants: This retrospective, multisite cohort study of adolescents 11 to 17 years of age who were hospitalized with at least 1 mental health condition diagnosis between February 1, 2019, and April 30, 2021, used patient-level data from electronic health records of 8 children's hospitals in the US and France. Main Outcomes and Measures: Change in the monthly proportion of mental health condition-associated hospitalizations between the prepandemic (February 1, 2019, to March 31, 2020) and pandemic (April 1, 2020, to April 30, 2021) periods using interrupted time series analysis. Results: There were 9696 adolescents hospitalized with a mental health condition during the prepandemic period (5966 [61.5%] female) and 11 101 during the pandemic period (7603 [68.5%] female). The mean (SD) age in the prepandemic cohort was 14.6 (1.9) years and in the pandemic cohort, 14.7 (1.8) years. The most prevalent diagnoses during the pandemic were anxiety (6066 [57.4%]), depression (5065 [48.0%]), and suicidality or self-injury (4673 [44.2%]). There was an increase in the proportions of monthly hospitalizations during the pandemic for anxiety (0.55%; 95% CI, 0.26%-0.84%), depression (0.50%; 95% CI, 0.19%-0.79%), and suicidality or self-injury (0.38%; 95% CI, 0.08%-0.68%). There was an estimated 0.60% increase (95% CI, 0.31%-0.89%) overall in the monthly proportion of mental health-associated hospitalizations following onset of the pandemic compared with the prepandemic period. Conclusions and Relevance: In this cohort study, onset of the COVID-19 pandemic was associated with increased hospitalizations with mental health diagnoses among adolescents. These findings support the need for greater resources within children's hospitals to care for adolescents with mental health conditions during the pandemic and beyond.


Subject(s)
COVID-19 , Pandemics , Child , Adolescent , Female , Humans , Male , COVID-19/epidemiology , Mental Health , SARS-CoV-2 , Cohort Studies , Retrospective Studies , Hospitalization
5.
EClinicalMedicine ; 55: 101724, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2104824

ABSTRACT

Background: While acute kidney injury (AKI) is a common complication in COVID-19, data on post-AKI kidney function recovery and the clinical factors associated with poor kidney function recovery is lacking. Methods: A retrospective multi-centre observational cohort study comprising 12,891 hospitalized patients aged 18 years or older with a diagnosis of SARS-CoV-2 infection confirmed by polymerase chain reaction from 1 January 2020 to 10 September 2020, and with at least one serum creatinine value 1-365 days prior to admission. Mortality and serum creatinine values were obtained up to 10 September 2021. Findings: Advanced age (HR 2.77, 95%CI 2.53-3.04, p < 0.0001), severe COVID-19 (HR 2.91, 95%CI 2.03-4.17, p < 0.0001), severe AKI (KDIGO stage 3: HR 4.22, 95%CI 3.55-5.00, p < 0.0001), and ischemic heart disease (HR 1.26, 95%CI 1.14-1.39, p < 0.0001) were associated with worse mortality outcomes. AKI severity (KDIGO stage 3: HR 0.41, 95%CI 0.37-0.46, p < 0.0001) was associated with worse kidney function recovery, whereas remdesivir use (HR 1.34, 95%CI 1.17-1.54, p < 0.0001) was associated with better kidney function recovery. In a subset of patients without chronic kidney disease, advanced age (HR 1.38, 95%CI 1.20-1.58, p < 0.0001), male sex (HR 1.67, 95%CI 1.45-1.93, p < 0.0001), severe AKI (KDIGO stage 3: HR 11.68, 95%CI 9.80-13.91, p < 0.0001), and hypertension (HR 1.22, 95%CI 1.10-1.36, p = 0.0002) were associated with post-AKI kidney function impairment. Furthermore, patients with COVID-19-associated AKI had significant and persistent elevations of baseline serum creatinine 125% or more at 180 days (RR 1.49, 95%CI 1.32-1.67) and 365 days (RR 1.54, 95%CI 1.21-1.96) compared to COVID-19 patients with no AKI. Interpretation: COVID-19-associated AKI was associated with higher mortality, and severe COVID-19-associated AKI was associated with worse long-term post-AKI kidney function recovery. Funding: Authors are supported by various funders, with full details stated in the acknowledgement section.

6.
BMJ Open ; 12(6): e057725, 2022 06 23.
Article in English | MEDLINE | ID: covidwho-1901999

ABSTRACT

OBJECTIVE: To assess changes in international mortality rates and laboratory recovery rates during hospitalisation for patients hospitalised with SARS-CoV-2 between the first wave (1 March to 30 June 2020) and the second wave (1 July 2020 to 31 January 2021) of the COVID-19 pandemic. DESIGN, SETTING AND PARTICIPANTS: This is a retrospective cohort study of 83 178 hospitalised patients admitted between 7 days before or 14 days after PCR-confirmed SARS-CoV-2 infection within the Consortium for Clinical Characterization of COVID-19 by Electronic Health Record, an international multihealthcare system collaborative of 288 hospitals in the USA and Europe. The laboratory recovery rates and mortality rates over time were compared between the two waves of the pandemic. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome was all-cause mortality rate within 28 days after hospitalisation stratified by predicted low, medium and high mortality risk at baseline. The secondary outcome was the average rate of change in laboratory values during the first week of hospitalisation. RESULTS: Baseline Charlson Comorbidity Index and laboratory values at admission were not significantly different between the first and second waves. The improvement in laboratory values over time was faster in the second wave compared with the first. The average C reactive protein rate of change was -4.72 mg/dL vs -4.14 mg/dL per day (p=0.05). The mortality rates within each risk category significantly decreased over time, with the most substantial decrease in the high-risk group (42.3% in March-April 2020 vs 30.8% in November 2020 to January 2021, p<0.001) and a moderate decrease in the intermediate-risk group (21.5% in March-April 2020 vs 14.3% in November 2020 to January 2021, p<0.001). CONCLUSIONS: Admission profiles of patients hospitalised with SARS-CoV-2 infection did not differ greatly between the first and second waves of the pandemic, but there were notable differences in laboratory improvement rates during hospitalisation. Mortality risks among patients with similar risk profiles decreased over the course of the pandemic. The improvement in laboratory values and mortality risk was consistent across multiple countries.


Subject(s)
COVID-19 , Pandemics , Hospitalization , Humans , Retrospective Studies , SARS-CoV-2
7.
J Med Internet Res ; 24(5): e37931, 2022 05 18.
Article in English | MEDLINE | ID: covidwho-1862520

ABSTRACT

BACKGROUND: Admissions are generally classified as COVID-19 hospitalizations if the patient has a positive SARS-CoV-2 polymerase chain reaction (PCR) test. However, because 35% of SARS-CoV-2 infections are asymptomatic, patients admitted for unrelated indications with an incidentally positive test could be misclassified as a COVID-19 hospitalization. Electronic health record (EHR)-based studies have been unable to distinguish between a hospitalization specifically for COVID-19 versus an incidental SARS-CoV-2 hospitalization. Although the need to improve classification of COVID-19 versus incidental SARS-CoV-2 is well understood, the magnitude of the problems has only been characterized in small, single-center studies. Furthermore, there have been no peer-reviewed studies evaluating methods for improving classification. OBJECTIVE: The aims of this study are to, first, quantify the frequency of incidental hospitalizations over the first 15 months of the pandemic in multiple hospital systems in the United States and, second, to apply electronic phenotyping techniques to automatically improve COVID-19 hospitalization classification. METHODS: From a retrospective EHR-based cohort in 4 US health care systems in Massachusetts, Pennsylvania, and Illinois, a random sample of 1123 SARS-CoV-2 PCR-positive patients hospitalized from March 2020 to August 2021 was manually chart-reviewed and classified as "admitted with COVID-19" (incidental) versus specifically admitted for COVID-19 ("for COVID-19"). EHR-based phenotyping was used to find feature sets to filter out incidental admissions. RESULTS: EHR-based phenotyped feature sets filtered out incidental admissions, which occurred in an average of 26% of hospitalizations (although this varied widely over time, from 0% to 75%). The top site-specific feature sets had 79%-99% specificity with 62%-75% sensitivity, while the best-performing across-site feature sets had 71%-94% specificity with 69%-81% sensitivity. CONCLUSIONS: A large proportion of SARS-CoV-2 PCR-positive admissions were incidental. Straightforward EHR-based phenotypes differentiated admissions, which is important to assure accurate public health reporting and research.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Electronic Health Records , Hospitalization , Humans , Retrospective Studies
9.
J Med Internet Res ; 23(2): e26302, 2021 02 22.
Article in English | MEDLINE | ID: covidwho-1575865

ABSTRACT

BACKGROUND: The emergence of SARS-CoV-2 (ie, COVID-19) has given rise to a global pandemic affecting 215 countries and over 40 million people as of October 2020. Meanwhile, we are also experiencing an infodemic induced by the overabundance of information, some accurate and some inaccurate, spreading rapidly across social media platforms. Social media has arguably shifted the information acquisition and dissemination of a considerably large population of internet users toward higher interactivities. OBJECTIVE: This study aimed to investigate COVID-19-related health beliefs on one of the mainstream social media platforms, Twitter, as well as potential impacting factors associated with fluctuations in health beliefs on social media. METHODS: We used COVID-19-related posts from the mainstream social media platform Twitter to monitor health beliefs. A total of 92,687,660 tweets corresponding to 8,967,986 unique users from January 6 to June 21, 2020, were retrieved. To quantify health beliefs, we employed the health belief model (HBM) with four core constructs: perceived susceptibility, perceived severity, perceived benefits, and perceived barriers. We utilized natural language processing and machine learning techniques to automate the process of judging the conformity of each tweet with each of the four HBM constructs. A total of 5000 tweets were manually annotated for training the machine learning architectures. RESULTS: The machine learning classifiers yielded areas under the receiver operating characteristic curves over 0.86 for the classification of all four HBM constructs. Our analyses revealed a basic reproduction number R0 of 7.62 for trends in the number of Twitter users posting health belief-related content over the study period. The fluctuations in the number of health belief-related tweets could reflect dynamics in case and death statistics, systematic interventions, and public events. Specifically, we observed that scientific events, such as scientific publications, and nonscientific events, such as politicians' speeches, were comparable in their ability to influence health belief trends on social media through a Kruskal-Wallis test (P=.78 and P=.92 for perceived benefits and perceived barriers, respectively). CONCLUSIONS: As an analogy of the classic epidemiology model where an infection is considered to be spreading in a population with an R0 greater than 1, we found that the number of users tweeting about COVID-19 health beliefs was amplifying in an epidemic manner and could partially intensify the infodemic. It is "unhealthy" that both scientific and nonscientific events constitute no disparity in impacting the health belief trends on Twitter, since nonscientific events, such as politicians' speeches, might not be endorsed by substantial evidence and could sometimes be misleading.


Subject(s)
COVID-19/psychology , Data Analysis , Health Education/statistics & numerical data , Machine Learning , Natural Language Processing , Public Opinion , Social Media/statistics & numerical data , COVID-19/epidemiology , Humans , Pandemics
10.
Front Pediatr ; 9: 700656, 2021.
Article in English | MEDLINE | ID: covidwho-1526783

ABSTRACT

Ongoing monitoring of COVID-19 disease burden in children will help inform mitigation strategies and guide pediatric vaccination programs. Leveraging a national, comprehensive dataset, we sought to quantify and compare disease burden and trends in hospitalizations for children and adults in the US.

11.
J Med Internet Res ; 23(10): e31400, 2021 10 11.
Article in English | MEDLINE | ID: covidwho-1463405

ABSTRACT

BACKGROUND: Many countries have experienced 2 predominant waves of COVID-19-related hospitalizations. Comparing the clinical trajectories of patients hospitalized in separate waves of the pandemic enables further understanding of the evolving epidemiology, pathophysiology, and health care dynamics of the COVID-19 pandemic. OBJECTIVE: In this retrospective cohort study, we analyzed electronic health record (EHR) data from patients with SARS-CoV-2 infections hospitalized in participating health care systems representing 315 hospitals across 6 countries. We compared hospitalization rates, severe COVID-19 risk, and mean laboratory values between patients hospitalized during the first and second waves of the pandemic. METHODS: Using a federated approach, each participating health care system extracted patient-level clinical data on their first and second wave cohorts and submitted aggregated data to the central site. Data quality control steps were adopted at the central site to correct for implausible values and harmonize units. Statistical analyses were performed by computing individual health care system effect sizes and synthesizing these using random effect meta-analyses to account for heterogeneity. We focused the laboratory analysis on C-reactive protein (CRP), ferritin, fibrinogen, procalcitonin, D-dimer, and creatinine based on their reported associations with severe COVID-19. RESULTS: Data were available for 79,613 patients, of which 32,467 were hospitalized in the first wave and 47,146 in the second wave. The prevalence of male patients and patients aged 50 to 69 years decreased significantly between the first and second waves. Patients hospitalized in the second wave had a 9.9% reduction in the risk of severe COVID-19 compared to patients hospitalized in the first wave (95% CI 8.5%-11.3%). Demographic subgroup analyses indicated that patients aged 26 to 49 years and 50 to 69 years; male and female patients; and black patients had significantly lower risk for severe disease in the second wave than in the first wave. At admission, the mean values of CRP were significantly lower in the second wave than in the first wave. On the seventh hospital day, the mean values of CRP, ferritin, fibrinogen, and procalcitonin were significantly lower in the second wave than in the first wave. In general, countries exhibited variable changes in laboratory testing rates from the first to the second wave. At admission, there was a significantly higher testing rate for D-dimer in France, Germany, and Spain. CONCLUSIONS: Patients hospitalized in the second wave were at significantly lower risk for severe COVID-19. This corresponded to mean laboratory values in the second wave that were more likely to be in typical physiological ranges on the seventh hospital day compared to the first wave. Our federated approach demonstrated the feasibility and power of harmonizing heterogeneous EHR data from multiple international health care systems to rapidly conduct large-scale studies to characterize how COVID-19 clinical trajectories evolve.


Subject(s)
COVID-19 , Pandemics , Adult , Aged , Female , Hospitalization , Hospitals , Humans , Male , Middle Aged , Retrospective Studies , SARS-CoV-2
12.
JAMA Netw Open ; 4(6): e2112596, 2021 06 01.
Article in English | MEDLINE | ID: covidwho-1265355

ABSTRACT

Importance: Additional sources of pediatric epidemiological and clinical data are needed to efficiently study COVID-19 in children and youth and inform infection prevention and clinical treatment of pediatric patients. Objective: To describe international hospitalization trends and key epidemiological and clinical features of children and youth with COVID-19. Design, Setting, and Participants: This retrospective cohort study included pediatric patients hospitalized between February 2 and October 10, 2020. Patient-level electronic health record (EHR) data were collected across 27 hospitals in France, Germany, Spain, Singapore, the UK, and the US. Patients younger than 21 years who tested positive for COVID-19 and were hospitalized at an institution participating in the Consortium for Clinical Characterization of COVID-19 by EHR were included in the study. Main Outcomes and Measures: Patient characteristics, clinical features, and medication use. Results: There were 347 males (52%; 95% CI, 48.5-55.3) and 324 females (48%; 95% CI, 44.4-51.3) in this study's cohort. There was a bimodal age distribution, with the greatest proportion of patients in the 0- to 2-year (199 patients [30%]) and 12- to 17-year (170 patients [25%]) age range. Trends in hospitalizations for 671 children and youth found discrete surges with variable timing across 6 countries. Data from this cohort mirrored national-level pediatric hospitalization trends for most countries with available data, with peaks in hospitalizations during the initial spring surge occurring within 23 days in the national-level and 4CE data. A total of 27 364 laboratory values for 16 laboratory tests were analyzed, with mean values indicating elevations in markers of inflammation (C-reactive protein, 83 mg/L; 95% CI, 53-112 mg/L; ferritin, 417 ng/mL; 95% CI, 228-607 ng/mL; and procalcitonin, 1.45 ng/mL; 95% CI, 0.13-2.77 ng/mL). Abnormalities in coagulation were also evident (D-dimer, 0.78 ug/mL; 95% CI, 0.35-1.21 ug/mL; and fibrinogen, 477 mg/dL; 95% CI, 385-569 mg/dL). Cardiac troponin, when checked (n = 59), was elevated (0.032 ng/mL; 95% CI, 0.000-0.080 ng/mL). Common complications included cardiac arrhythmias (15.0%; 95% CI, 8.1%-21.7%), viral pneumonia (13.3%; 95% CI, 6.5%-20.1%), and respiratory failure (10.5%; 95% CI, 5.8%-15.3%). Few children were treated with COVID-19-directed medications. Conclusions and Relevance: This study of EHRs of children and youth hospitalized for COVID-19 in 6 countries demonstrated variability in hospitalization trends across countries and identified common complications and laboratory abnormalities in children and youth with COVID-19 infection. Large-scale informatics-based approaches to integrate and analyze data across health care systems complement methods of disease surveillance and advance understanding of epidemiological and clinical features associated with COVID-19 in children and youth.


Subject(s)
COVID-19/epidemiology , Electronic Health Records/statistics & numerical data , Hospitalization/statistics & numerical data , Pandemics , SARS-CoV-2 , Adolescent , Child , Child, Preschool , Female , Global Health , Humans , Infant , Infant, Newborn , Male , Retrospective Studies
13.
J Am Med Inform Assoc ; 28(7): 1411-1420, 2021 07 14.
Article in English | MEDLINE | ID: covidwho-1075534

ABSTRACT

OBJECTIVE: The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) is an international collaboration addressing coronavirus disease 2019 (COVID-19) with federated analyses of electronic health record (EHR) data. We sought to develop and validate a computable phenotype for COVID-19 severity. MATERIALS AND METHODS: Twelve 4CE sites participated. First, we developed an EHR-based severity phenotype consisting of 6 code classes, and we validated it on patient hospitalization data from the 12 4CE clinical sites against the outcomes of intensive care unit (ICU) admission and/or death. We also piloted an alternative machine learning approach and compared selected predictors of severity with the 4CE phenotype at 1 site. RESULTS: The full 4CE severity phenotype had pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of individual code categories for acuity had high variability-up to 0.65 across sites. At one pilot site, the expert-derived phenotype had mean area under the curve of 0.903 (95% confidence interval, 0.886-0.921), compared with an area under the curve of 0.956 (95% confidence interval, 0.952-0.959) for the machine learning approach. Billing codes were poor proxies of ICU admission, with as low as 49% precision and recall compared with chart review. DISCUSSION: We developed a severity phenotype using 6 code classes that proved resilient to coding variability across international institutions. In contrast, machine learning approaches may overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold-standard outcomes, possibly owing to heterogeneous pandemic conditions. CONCLUSIONS: We developed an EHR-based severity phenotype for COVID-19 in hospitalized patients and validated it at 12 international sites.


Subject(s)
COVID-19 , Electronic Health Records , Severity of Illness Index , COVID-19/classification , Hospitalization , Humans , Machine Learning , Prognosis , ROC Curve , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL